Publications

Google scholar
Scopus
Identifier:
ORCiD: 0000-0002-2196-9350
ResearcherID: D-4971-2019


  1. J. Li, D. Golze, W. Yang, Combining Renormalized Singles GW Methods with the Bethe-Salpeter Equation for Accurate Neutral Excitation Energies, arXiv:2206.15034 (2022)
  2. J. Li, Y. Jin, P. Rinke, W. Yang, D. Golze, arXiv:2206.05627 (2022)
  3. L. Li, J. Z. Low, J. Wilhelm, G. Liao, S. Gunasekaran, R. L. Starr, D. Golze, C. Nuckolls, M. L. Steigerwald, F. Evers, F, L. M. Campos, X. Yin, L. Venkararaman, Highly Conducting Single Molecule Topological Insulators based on Mono- and Di-Radical Cations, Nat. Chem. (2022), DOI:10.1038/s41557-022-00978-1
  4. Y. Yao, D. Golze, P. Rinke, V. Blum, Y. Kanai, All-Electron BSE@GW Method for K-Edge Core Electron Excitation Energies, J. Chem. Theory Comput., DOI: 10.1021/acs.jctc.1c01180, 18 (2022), 1569–1583
  5. D. Golze, M. Hirvensalo, P. Hernández-León, A. Aarva, J. Etula, T. Susi, P. Rinke, T. Laurila, M. A. Caro, Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW, Chem. Mater. (2022), DOI:10.1021/acs.chemmater.1c04279
  6. J. Wilhelm, P. Seewald, D. Golze, Low-Scaling GW with Benchmark Accuracy and Application to Phosphorene Nanosheets, J. Chem. Theory Comput., 17 (2021), 1662, DOI:110.1021/acs.jctc.0c01282
  7. L. Keller, V. Blum, P. Rinke, D. Golze, Relativistic correction scheme for core-level binding energies from GW, J. Chem. Phys., 153 (2020), 114110, DOI:10.1063/5.0018231
  8. T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borstnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, J. Hutter CP2K: An Electronic Structure and Molecular Dynamics Software Package I. Quickstep: Efficient and Accurate Electronic Structure Calculations, J. Chem. Phys., 152 (2020), 194103, DOI:10.1063/5.0007045
  9. D. Golze, L. Keller, P. Rinke, Accurate absolute and relative core-level binding energies from GW, J. of Phys. Chem. Lett., (2020), DOI:10.1021/acs.jpclett.9b03423
  10. A. Stuke, C. Kunkel, D. Golze, M. Todorovic, J. T. Margraf, K. Reuter P. Rinke, H. Oberhofer, Atomic structures and orbital energies of 61,489 crystal-forming organic molecules, Sci. Data 7 (2020), 58, DOI:10.1038/s41597-020-0385-y
  11. L. K. Scarbath-Evers, R. Hammer, D. Golze, M. Brehm, D. Sebastiani, W. Widdra, From Flat to Tilted: Gradual Interfaces in Organic Thin Film Growth, Nanoscale, 12 (2020), 3834, DOI:10.1039/C9NR06592J
  12. D. Golze, M. Dvorak, P. Rinke, The GW compendium: A practical guide to theoretical photoemission spectroscopy, Front. Chem., 7 (2019), 377,
    DOI:10.3389/fchem.2019.00377
  13. M. Dvorak, D. Golze, P. Rinke, Quantum embedding theory in the screened Coulomb interaction: Combining configuration interaction with GW/BSE, Phys. Rev. Materials, 3 (2019), 070801, DOI:10.1103/PhysRevMaterials.3.070801
  14. L. K. Scarbath-Evers, M. Todorovic, D. Golze, R. Hammer, W. Widdra, D. Sebastiani, P. Rinke, Gold diggers: Altered reconstruction of the gold surface by physisorbed aromatic oligomers, Phys. Rev. Materials, 3 (2019), 011601(R), DOI:10.1103/PhysRevMaterials.3.011601
  15. D. Golze, J. Wilhelm, M. van Setten, P. Rinke, Core level binding energies from GW: An efficient full-frequency approach within a localized basis, J. Chem. Theory Comput., 14 (2018), 4856, DOI:10.1021/acs.jctc.8b00458
  16. X. Chen, E. Makkonen, D. Golze, O. Lopez-Acevedo, Silver-Stabilized Guanine Duplex: Structural and Optical Properties, J. Phys. Chem. Lett., 9 (2018), 4789, DOI:10.1021/acs.jpclett.8b01908
  17. J. Wilhelm, D. Golze, L.Talirz and J. Hutter, C. A. Pignedoli, Toward GW Calculations on Thousands of Atoms, J. Phys. Chem. Lett. , 9 (2018), 306, DOI:10.1021/acs.jpclett.7b02740
  18. D. Golze, M. Iannuzzi and J. Hutter, Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations, J. Chem. Theory Comput., 13, 2202, DOI:10.1021/acs.jctc.7b00148
  19. D. Golze, N. Benedikter, M. Iannuzzi, J. Wilhelm and J. Hutter, Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals, J. Chem. Phys., 146 (2017), 034105, DOI:10.1063/1.4973510
  20. D. Golze, J. Hutter and M. Iannuzzi, Wetting of water on hexagonal boron nitride@Rh(111): A QM/MM model based on atomic charges derived for nano-structured substrates, Phys. Chem. Chem. Phys., 17 (2015), 14307-14316, DOI:10.1039/c4cp04638b
  21. E. I. Izgorodina, D. Golze, R. Maganti, V. Armel, M. Taige, T. J. S. Schubert and D. R. MacFarlane. Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids, Phys. Chem. Chem. Phys., 16 (2014), 7209, DOI:10.1039/C3CP53035C
  22. D. Golze, M. Iannuzzi, M.-T. Nguyen, D. Passerone and J. Hutter., Simulation of Adsorption Processes at Metallic Interfaces: An Image Charge Augmented QM/MM Approach, J. Chem. Theory Comput., 9 (2013), 5086, DOI:10.1021/ct400698y
  23. D. Golze, M. Icker and S. Berger. , Implementation of two-qubit and three-qubit quantum computers using liquid-state nuclear magnetic resonance, Concept. Magnetic Reson. A, 40 (2012), 25, DOI:10.1002/cmr.a.21222

PhD Thesis (2016)

Title: Efficient Methods to Reduce the Complexity of the Charge Density within Density Functional Theory for Large Systems
Description: The objective of my thesis has been the development of approximative DFT-based methods that are computationally less expensive. The first strategy has been to combine different levels of theory into hybrid schemes, keeping the higher accuracy of DFT only for selected parts of the investigated system. I developed an image charge augmented quantum mechanics/molecular mechanics (QM/MM) scheme for the simulation of adsorption processes at metallic interfaces. The second strategy has been the linearization of the representation of the charge density using a local resolution-of-the-identity (LRI) approach yielding significant speed-ups of an already very efficient implementation. To further increase the LRI performance, I derived a highly performant analytic integral scheme for contracted spherical Gaussian functions.
All methods have been implemented in the electronic structure package CP2K in a very efficient and massively parallel fashion.
Supervisor and Place: Prof. Jürg Hutter, Department of Chemistry, Universität Zürich
Read: https://www.zora.uzh.ch/id/eprint/116638/